
Distance estimation method for drawing Mandelbrot and
Julia sets

Dr. Lindsay Robert Wilson
http://imajeenyus.com

20/11/12

Credit & sources

The distance estimation method (DEM) is one of several techniques commonly used for visualising Mandelbrot and
Julia sets. It is slightly more complicated than the simplistic “in or out” colouring scheme, but gives much better
results, especially in regions which are “filamentous” - those that have a lot of structure, but contain relatively little
of the set. However, I couldn’t find a really good explanation of how the DEM works, so I’ve tried to provide a
decent description and examples here. I won’t go into detail of the different colour gradient mappings I’ve used -
there’s many different ways of achieving a “nice” result, and it’s best just to play around with them.
The main inspiration was Iñigo Quilez’ page at http://www.iquilezles.org/www/articles/distancefractals/
distancefractals.htm. Other good references are http://mrob.com/pub/muency/distanceestimator.html and
http://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set. For a good overview
of the complex quadratic polynomial and its derivatives, see http://en.wikipedia.org/wiki/Complex_quadratic_
polynomial.

Mandelbrot set recap

The Mandelbrot set is the set of all points c in the complex plane for which the iterative process zn+1 = z2
n + c, z0 =

0+0i is bounded. Pick a point c and calculate a series of zn+1. If the modulus of zn+1 heads off to infinity, then c is
outside the set, otherwise c is inside. In practice, this is determined by comparing |zn+1| against a limit radius - if
the modulus is greater than the limit radius, the original c point is assumed to be outside. A cap on the maximum
number of iterations is also used, to save on time.

“In or out” colouring scheme

The simplest method of displaying the set is to colour a pixel black if it is within the set and white if it is outside.
This produces the following familiar result for the whole set.

1

http://imajeenyus.com
http://www.iquilezles.org/www/articles/distancefractals/distancefractals.htm
http://www.iquilezles.org/www/articles/distancefractals/distancefractals.htm
http://mrob.com/pub/muency/distanceestimator.html
http://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set
http://en.wikipedia.org/wiki/Complex_quadratic_polynomial
http://en.wikipedia.org/wiki/Complex_quadratic_polynomial

This looks pretty reasonable, but look at what happens if we try and look at a region in greater detail. The next
image is centered at (−0.74364085, 0.13182733) and has a width and height of 0.00012.

Pretty poor. There is, in fact, a lot of detail around the central miniature Mandelbrot set (see colour pictures later),
but the details are smaller than a single pixel and appear invisible. Fortunately, there is a better way of visualising
the set, which doesn’t involve too much extra calculation.

“Escape time” colouring scheme

During the iteration process performed on each point, we calculate the number of iterations required for |zn+1| to
exceed the limit radius. This is called the escape time, or escape count. Points which are farther from the set will
have a smaller escape time, because they require fewer iterations to reach the limit radius. Points inside the set
will have the maximum allowed escape time (remember that the maximum number of iterations is limited). If we
colour each point according to its escape time, we can obtain a much better representation. The two images below
are of the whole set and the same zoomed region as before. Note that we are actually showing points which are
outside the set.

While this is clearly a much better representation, it still isn’t as good as what can be achieved using the distance
estimation method. It clearly shows the existence of connecting filaments which were not visible in the “in or out”
colouring scheme. Because the escape time is a discrete integer (number of iterations), bands are visible in the
colour image. These are shown enhanced in the images below.

2

Distance estimation method

For each point outside the set, it is possible to calculate an estimate of the shortest distance between it and the set.
There is a function called the Hubbard-Douady potential which gives the “potential” of every point outside the set.
(Imagine a metal plate in the shape of the set with a voltage applied to it. The Hubbary-Douady potential would
give the voltage (electric potential) at each point outside the set.) The potential function at a point c is given by

G (c) = lim
n→∞

1
2n

ln |zn| (1)

This is plotted below for the entire set, with blue=small G (c) and red=large G (c).

The distance estimate is given by (similar to the expression for the distance to an isoline of a 2D function)

d = G (c)
|G′ (c) | (2)

The derivative of G (c) with respect to c is

G′ (c) = lim
n→∞

1
2n

|z′
n|
|zn|

(3)

Therefore,
d = lim

n→∞

|zn| ln |zn|
|z′

n|
(4)

3

How do we find z′
n? Note that this derivative is with respect to c. If we differentiate the complex quadratic equation

zn+1 = z2
n + c (5)

with respect to c, we obtain

z′
n+1 = 2znz′

n + 1 (6)

This can be calculated during the iteration process, with an initial value of z′
0 = 1. Here is a pseudocode example

of a function which returns the distance from a point (cx, cy) to the set, calculated using (4).

function set_distance(cx,cy) as float

dim c,z,z_new,dz,dz_new as complex
’ init variables
c=cx+cy*i
z=0+0*i
dz=1+0*i
cnt=1 ’ initialise iteration counter
do

z_new=z*z+c ’ iterate the quadratic equation
dz_new=2*z*dz+1 ’ iterate the derivative
z=z_new ’ roll values
dz=dz_new ’ roll values
if modulus(z)>limit_radius then exit do ’ if we exceed the limit then stop iterating
cnt=cnt+1 ’ increment counter

loop until cnt>max_iterations
return modulus(z)*log(modulus(z))/modulus(dz) ’ return the distance

end function

Here are some examples of using the DEM to draw the set, with different colour gradient maps.

4

It gives a much clearer representation of the set. Note that most of the points in the zoomed region are actually
outside the set, but are made visible by use of the distance estimation function.
Combinations of each of the above display techniques can also be used for greater visual effect, for example by using
a different technique for each of the red, green, blue channels and then combining them. The potential function
itself could also be used to display the set. There are many additional display techniques available, but these are
probably the simplest to implement.

Julia sets

The distance estimation method can also be applied to Julia sets, with a slight modification. The Julia set at a
point c is the set of all points z0 for which the iterative process zn+1 = z2

n + c remains bounded. (By contrast, the
Mandelbrot set was the set of all points c, with z0 = 0 + 0i for all points.) According to http://mrob.com/pub/
muency/distanceestimator.html, the Hubbard-Douady potential takes the same form - this is understandable,
since the potential depends only on the value of zn as n → ∞. However, it is now a function of z0, not c, and is
given by

G (z0) = lim
n→∞

1
2n

ln |zn| (7)

The distance estimate is now
d = G (z0)
|G′ (z0) | (8)

The derivative of G (z0) with respect to z is

G′ (z0) = lim
n→∞

1
2n

|z′
n|
|zn|

(9)

Therefore, we again have
d = lim

n→∞

|zn| ln |zn|
|z′

n|
(10)

However, z′
n is now the derivative with respect to z0 and is given by

z′
n+1 = 2znz′

n (11)

with an initial value of z′
0 = 1. This is very similar to (6), with the absence of the +1 term. Here is another

pseudocode example for a function which returns the distance from a point (z0x, z0y) to the Julia set. (cx, cy) is
also specified. Note how similar this is to the code for the Mandelbrot set - the only differences are the requirement
to specify (z0x, z0y) and the slightly different derivative iteration equation.

5

http://mrob.com/pub/muency/distanceestimator.html
http://mrob.com/pub/muency/distanceestimator.html

function set_distance(cx,cy,z0x,z0y) as float
dim c,z,z_new,dz,dz_new as complex

’ init variables
c=cx+cy*i
z=z0x+z0y*i
dz=1+0*i
cnt=1 ’ initialise iteration counter
do

z_new=z*z+c ’ iterate the quadratic equation
dz_new=2*z*dz ’ iterate the derivative
z=z_new ’ roll values
dz=dz_new ’ roll values
if modulus(z)>limit_radius then exit do ’ if we exceed the limit then stop iterating
cnt=cnt+1 ’ increment counter

loop until cnt>max_iterations
return modulus(z)*log(modulus(z))/modulus(dz) ’ return the distance

end function

Here are a few plots of the Julia set using the distance estimation method. The first image is for c = −0.8 + 0.16i.
The second image is a zoom of the upper part of the first. The third image is a zoom of the set for c = −1.2+0.156i.

6

